

The influence of learning facilities, learning motivation, and learning satisfaction on students' learning interests

MUHAMMAD HARLI HANAPI,^{1*} HIZKIA MANURUNG,² AND MAYSHEL ADINDA VIOLA³

Abstract

The study examines how students' interest in learning is affected by learning motivation, learning satisfaction, and learning engagement. Quantitative methodology that relies on basic random sampling techniques to compile data. This study included 177 participants from 8 different institutions in Jambi City. The study found that students' academic progress and enjoyment are significantly affected by learning facilities, learning motivation, and excitement in learning. Reliability and construct validity testing were carried out using the Fornell-Larcker, Cross-loading, and HTMT analysis methods, showing good discriminant validity. The structural model tested supports a positive relationship between exogenous and endogenous constructs, as well as all proposed hypotheses. This study used the PLS-SEM (partial least squares plus structural equation modeling) approach. Although students' interest in learning is influenced by learning motivation, the study found that having a suitable learning approach. Although students' interest in learning is influenced by learning motivation, the study found that having suitable learning facilities had a positive effect on students' motivation and satisfaction with learning. Using a 5-point Likert scale, construct behavior analysis was carried out, resulting in high average variable effect values. Implications for future study highlight the need to enhance learning facilities, learning motivation, and student learning satisfaction as means to successfully raise interest in learning within the framework of higher education. In order to increase students' interest and motivation in studying, it is essential to provide them with a helpful learning environment.

Keywords

Learning Facilities;
Motivation to Learn; Student Satisfaction; Student Interests

Article History

Received 01 November 2023
Accepted 22 January 2024

How to Cite

Hanapi, M. H., Manurung, H., Adinda, M. (2024). The influence of learning facilities, learning motivation, and learning satisfaction on students' learning interests. *Jurnal Sinar Edukasi*, 5(1), 57-79. <https://doi.org/10.61346/jse.v%vi%oi.168>

^{1,2,3} Universitas Jambi, Indonesia

Introduction

The educational system is the backbone of any nation's growth. Education quality is essential to generating educated and competent human resources in this era of increased competition and globalization (Dacholfany, 2017). Students are the main focus of higher education, hence they are essential to accomplishing these goals. According to Syardiansah (2016), the quality of higher education is influenced by students' interest in learning. Having a strong desire to learn is associated with an improved learning experience and higher levels of academic achievement (Firansyah, 2015). The reason being a desire to learn implies an inclination to strive for the desired outcomes.

In an effort to increase students' interest in learning, several factors are the focus of attention, including learning facilities, learning motivation, and learning satisfaction (Rahayu et al, 2023). Adequate learning facilities are an important prerequisite for creating a conducive learning environment. Research by Damanik (2019) and Reski (2018), Research has shown that classrooms that are well-designed have a beneficial effect on students' motivation and performance in the classroom. Some study suggests that pupils are more engaged and motivated to study in modern, well-equipped classrooms (Muhasim, 2017).

Adequate learning facilities on campus, including access to libraries, technology, and comfortable study spaces, are expected to increase students' interest in learning by providing an environment that supports and facilitates learning (Fa'atin, 2017). Apart from that, high learning motivation is also believed to strengthen students' interest in learning by encouraging them to achieve their academic goals (Sidabutar, 2020). Indarti et al. (2021) also found that students are more likely to be engaged and satisfied with their academic pursuits when they report high levels of learning satisfaction, which includes positive experiences with the learning process, interactions with lecturers, and subject matter comprehension.

As Cleopatra herself said in 2015. What motivates a person to carry out a job is their intrinsic drive, need, or desire to do so. Another way to look at motivation is as the driving force behind an activity, making sure it goes in the right direction. Furthermore, learning motivation is a major factor impacting students' interest in studying (Rahman, 2022). According to Prabowo et al. (2023), a highly motivated learning environment, optimal learning outcomes, and active student engagement are all made possible by a high level of intrinsic motivation. Students who are highly motivated to study tend to be enthusiastic about the subject and get good grades, according to studies conducted by Lomu and Widodo (2018) and Nurmala et al. (2014).

No less important, learning satisfaction also plays a role in forming students' interest in learning (Yasin & Baresi, 2024). Learning satisfaction reflects the extent to which students feel satisfied with the learning process they are undergoing, starting from service quality to lecturer competence (Lussianda, 2019). Research by Putra (2019) and Sumarsono et al (2021) shows that high learning satisfaction can strengthen students' interest in learning, so that it will indirectly influence their academic achievement.

However, in the context of student interest in learning, other factors also have the potential to influence, as stated in research by Rista (2022) and Jusmawati et al (2020), such as Internet use, online-based learning, and quality of learning media, as well as other factors. Other factors can also influence students' interest in learning, which will ultimately impact their academic achievement.

Consequently, it is essential to understand the relationship between students' interest in learning and factors like learning satisfaction, learning motivation, and learning settings. Through this understanding, it is hoped that more effective and efficient learning strategies can be developed, and can improve students' overall academic achievement. Therefore, in this article, we will examine in more depth the relationship between these factors, as well as their implications in improving the quality of higher education in the future.

Theory and Hypothesis Study

Learning facilities

Learning facilities in the learning context refer to all the facilities and infrastructure provided to support the learning process. This includes classrooms, libraries, laboratories, sports facilities, and supporting technology such as computers and internet access. [Habsyi \(2020\)](#) stated that what is meant by learning facilities is learning equipment that a school must have, which can facilitate and expedite the application of a business, this can be in the form of objects or money.

According to [Inayah \(2013\)](#), for good learning, there should be adequate learning facilities, including study space, sufficient lighting, handbooks, and complete learning equipment. Adequate learning facilities are very important because they create a conducive environment for students to learn and develop. Classrooms that are comfortable and equipped with modern learning equipment can facilitate interaction between teachers and students, as well as increase concentration and focus on learning. Meanwhile, access to a library with a wide and varied book collection can improve students' understanding of learning material. Sports facilities are also important because they can improve students' physical health, which has a positive impact on their mental well-being and learning ability. With assistive technology, such as computers and the internet, students can access additional learning resources and expand the scope of their knowledge. The absence of all-encompassing learning materials is one factor that makes education challenging. Having enough learning materials both at school and at home, however, will allow pupils to achieve good learning outcomes ([Habsyi, 2020](#)).

Learning motivation

Learning motivation is an essential factor in an effective learning process. A student's learning motivation may be defined as the overarching force that initiates, sustains, and guides their learning activities toward the achievement of their goals ([Kiswoyowati, 2011](#)). Someone is more likely to finish a job when they are encouraged to do so by motivation. The purpose of motivation is to direct learning processes toward the achievement of predetermined goals. In contrast, learning motivation is defined by [Ernata \(2017\)](#) as giving students internal and external supports while they learn to change their behavior.

A student's intrinsic drive to learn is a factor in their ability to achieve optimal learning outcomes. According to [Sardiman \(2014\)](#), students who are highly motivated to study will have a more positive outlook on the learning process and will be able to acquire more knowledge. A more positive change in learning may only occur if students' intrinsic passion to study is nurtured.

Learning satisfaction

The term "learning satisfaction" is used in the field of education to describe how happy or fulfilled students are with their educational experience. [Juhji et al. \(2020\)](#) state that when people talk about their learning experiences, whether online or off, they're referring to their level of satisfaction with the learning process overall. When students are happy with what they learn and how they learn it, that's learning satisfaction ([Ko & Chung, 2014](#)). Consequently, the enjoyment of learning is connected to how students assess their own learning encounters and accomplishments, as well as their engagement in the process of learning. Learning satisfaction refers to the extent to which a student has a favorable perception of their educational experience upon finishing learning activities ([Nagy, 2018](#)).

Interests in learning

Having an interest in learning is a psychological trait that encourages individuals to be actively involved in their own learning. It is the combination of interest, enthusiasm, and drive to learn, understand, and excel in new fields of knowledge or skills. Interest in learning is defined by [Widiyarto \(2017\)](#) as a strong drive or enthusiasm to focus on learning activities via environmental interaction, leading to behavioral changes. [Charli et al. \(2019\)](#) also explain the desire to learn. According to him, a desire to learn is a strong inclination, enthusiasm, or motivation to achieve anything. A desire to learn is, at its core, the acknowledgement of your interconnectedness with the universe. The more intimate or strong the relationship, the higher the degree of interest. Therefore, a student's engagement with the process may be enhanced by their passion for learning ([Wibowo, 2016](#)).

Learning facilities on interest in learning

Having access to adequate learning facilities has a favorable effect on students' motivation to study. Complete and comfortable learning facilities, such as libraries equipped with diverse book collections, quiet and comfortable study rooms, and easy access to learning technology such as computers and the internet, can create an environment that stimulates interest in learning. Students tend to be more motivated to learn when they have easy access to the resources needed to support their learning process ([Trong, 2017](#)). Apart from that, adequate learning facilities can also create a more enjoyable and interactive learning experience for students, which in turn can increase their interest in exploring learning material ([Clark & Mayer, 2011](#)).

Having adequate learning facilities can help improve student academic achievement ([Lee & Choi, 2019](#)). With the availability of facilities such as comfortable study rooms and learning support technology, Students get more opportunities to learn the content thoroughly and improve their problem-solving skills. As a result, students may feel more invested in their studies and develop a stronger passion for certain subjects. Therefore, adequate learning facilities not only increase students' interest in learning but also have the potential to have a positive impact on their academic achievement.

Hypothesis 1: The availability of adequate learning facilities has a positive influence on student interest in learning.

Learning facilities on learning motivation

Good learning facilities, such as comfortable classrooms, access to educational technology, a complete library, and a conducive learning environment, can increase the comfort and efficiency of the teaching and learning process. According to Environmental Motivation theory (Eccles & Roeser, 2011), a supportive physical environment can increase student engagement and motivation. When classrooms are well-designed, students are more invested in their education because they can more easily get their hands on the resources they need. Students' motivation to study, according to this hypothesis, rises in direct proportion to the caliber of the study materials at their disposal.

In addition, the Basic Needs theory by Maslow (1943) also supports this hypothesis by asserting that basic needs such as physical comfort must be met before individuals can achieve higher levels of motivation, including in the context of learning. Adequate facilities meet students' basic needs for a safe and comfortable environment, allowing them to focus and be motivated in learning. Empirical research conducted by Noviana (2014) found that good school facility conditions are directly related to increased student motivation and achievement.

Hypothesis 2: Adequate learning facilities are believed to have a significant influence on student learning motivation.

Learning facilities on student satisfaction

Learning facilities that include physical infrastructure such as comfortable classrooms, complete libraries, sophisticated laboratories, and access to modern information and communication technology can increase comfort and convenience in learning. Maslow's (1943) basic needs theory emphasizes that physiological and safety needs must be met first before individuals can achieve higher satisfaction, such as self-actualization, which in this context is related to learning satisfaction. Therefore, the existence of good learning facilities allows students to feel safe, comfortable, and supported in their efforts to achieve high academic achievement, which ultimately increases their satisfaction with the learning experience. Furthermore, research by Rajab and Indriyani (2024) on student engagement shows that a supportive learning environment, including adequate facilities, contributes to increasing student engagement in academic and non-academic activities. This higher engagement often correlates with greater satisfaction with the overall learning experience. Apart from that, a study by Ramdhani et al (2024) also supports the view that good educational facilities are one of the key factors in creating a conducive learning environment, which in turn increases student satisfaction.

Hypothesis 3: Adequate learning facilities have a significant influence on the level of student satisfaction in the learning process.

Learning motivation on interest in learning

Learning motivation refers to internal or external drives that influence a person's level of desire to learn and achieve their academic goals. Meanwhile, interest in learning is a person's

positive response and intrinsic interest in a particular learning subject or topic. In [Eriany et al \(2014\)](#), intrinsic motivation, which comes from an internal desire to learn and develop, thus positively influences an individual's interest in learning. Individuals who are driven by intrinsic motivation tend to be more involved in the learning process, feel personal satisfaction from academic achievements, and therefore, have a higher interest in learning ([Sappaile et al, 2024](#)). In contrast, extrinsic motivation, which arises from external factors such as praise or prizes, may not provide the same encouragement for interest in learning due to a lack of emotional and personal involvement in the learning process ([Faristin et al, 2023](#)). In addition, self-determination theory also considers the importance of a supportive environment in facilitating intrinsic motivation and continued interest in learning ([Deci & Ryan, 2012](#)). Researchers [Nani and Melati \(2020\)](#) found that factors including self-confidence, interest in the subject matter, and the perceived worth of learning could act as mediators between learning motivation and interest.

Hypothesis 4: Learning motivation has a significant influence on individual learning interest.

Learning motivation on satisfaction

Learning motivation, both intrinsic and extrinsic, encourages students to be actively involved in the learning process, pursue knowledge enthusiastically, and face academic challenges with a positive attitude. According to [Oktiani \(2017\)](#), individuals who have intrinsic motivation tend to experience higher satisfaction because they learn based on personal interest and the desire to develop their abilities. Conversely, extrinsic motivation, which originates from external causes like prizes or recognition, may also incentivize students to attain desirable outcomes, but with a potentially lesser degree of pleasure compared to intrinsic drive. Thus, this hypothesis states that a high level of learning motivation, both intrinsic and extrinsic, will be positively related to the level of student satisfaction in their learning process.

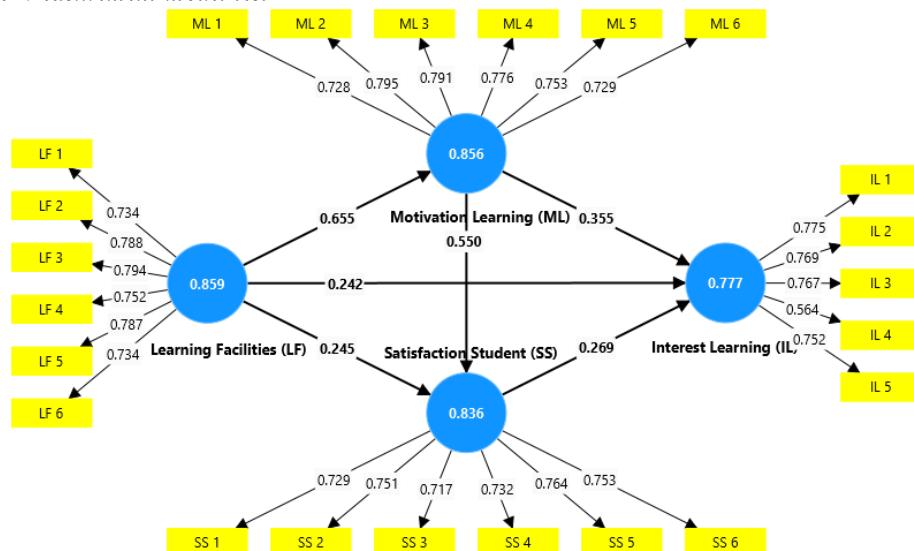
Previous studies show that learning motivation can influence various aspects of student satisfaction. In research by [Akbar et al \(2023\)](#), it is revealed that motivated students tend to be more involved in academic and non-academic activities, which in turn increases their satisfaction with the overall college experience. Apart from that, [Islamiyah \(2019\)](#) in the theory of academic motivation states that students who have high motivation not only achieve better academic achievements but also feel more satisfied with their learning process.

Hypothesis 5: Learning motivation plays a significant role in determining the level of student satisfaction with their academic experience.

Learning satisfaction on interest in learning

Based on psychological theories of learning and interest development, the data suggests a positive correlation between an individual's degree of learning pleasure and their interest in learning. [Syaparuddin et al \(2020\)](#) emphasize that intrinsic satisfaction in learning, namely satisfaction that arises from within the individual without external pressure, is an important factor in motivating individuals to actively participate in learning. When someone feels satisfied with their learning process, they tend to feel more autonomous and take the initiative to explore more deeply the subject matter they are interested in. Research conducted by [Yasin](#)

and Baresi (2024) shows that learning satisfaction plays a key role in developing long-term interest in learning. When a person is satisfied with their learning experience, they tend to experience increased interest in the subject due to the positive association formed between an enjoyable learning experience and growing interest. The higher a person's level of learning satisfaction, the greater their interest in continuing to learn and developing their knowledge.


Hypothesis 6: Learning satisfaction can have a significant influence on a person's interest in learning.

Results

Demographic Information

The reliability of the underlying variable measurements used to test the investigational hypotheses is the goal of the data collection procedure. Establishing the reliability, convergent validity, and discriminant validity of a measurement is crucial for assessing its agreement, uniqueness, and dependability. The measurement model test is shown in Figure 1. All of the items in this test had factor loadings that ranged from 0.564 to 0.795. Every variable's Cronbach's Alpha is also shown. ranged from 0.242 to 0.655, whereas the structural coefficient fell anywhere between 0.777 and 0.859.

Figure 1. Measurement model test

Fornell and Larcker (1981) state that in order to show convergent validity, the AVE (Average Variance Extracted) score for each construct has to be more than 0.50. All of the constructs in Table 1 have AVE scores greater than 0.5, indicating that they are valid and reliable. All constructs in this study met the established convergent validity criteria, with all AVE values for each construct exceeding 0.50, providing strong evidence of overall convergent validity.

Table 1. Load, Cronbach's Alpha, reliability, and AVE outcomes

Construct	Items	Loads	Cronbach's Alpha	Composite Reability (rho_a)	Composite Reability (rho_c)	AVE
Interest Learning (IL)	IL 1	0,775	0,777	0,777	0,849	0,533
	IL 2	0,769				
	IL 3	0,767				
	IL 5	0,752				
Learning Facilities (LF)	LF 1	0,734	0,859	0,865	0,894	0,586
	LF 2	0,788				
	LF 3	0,794				
	LF 4	0,752				
	LF 5	0,787				
	LF 6	0,734				
Motivation Learning (ML)	ML 1	0,728	0,856	0,856	0,893	0,581
	ML 2	0,795				
	ML 3	0,791				
	ML 4	0,776				
	ML 5	0,753				
	ML 6	0,729				
Satisfaction Student (SS)	SS 1	0,729	0,836	0,837	0,880	0,549
	SS 2	0,751				
	SS 3	0,717				
	SS 4	0,732				
	SS 5	0,764				
	SS 6	0,753				

In order to be considered reliable (having internal consistency), Cronbach's α and composite reliability (CR) ratings must exceed 0.7 (Chin, 1998). Table 1 indicates that there was good internal consistency, as all Cronbach's α values and composite dependability (CR) were more than 0.7. For an indicator to be deemed credible, its factorial loading must exceed 0.7. When increasing the composite dependability above the recommended cutoff value (>0.7), indications with loadings between 0.40 and 0.70 should typically be removed from the scale (Chin, 1998). While the majority of the load indicators are over 0.7, there is one load (IL4 = 0.564) that falls within the range of 0.4-0.7, as seen in Table 1. It seems that CR is already more than 0.7 when considering the overall reliability of all structures without factor loadings greater than 0.4 and less than 0.7. Finding that item removal was unnecessary and indicating good reliability, it was found that composite dependability remained with loadings more than 0.7 after their removal (Chin, 1998).

First, the Fornell-Larcker test was used to determine discriminant validity. Second, crossloading was used. And third, the heterotrait-monotrait ratio, or HTMT, was assessed. Fornell-Larcker claims that latent constructs show greater variation with defined indicators than other structural model latent variables. Any latent construct's AVE should be greater than the square of its highest correlation with other latent constructs, as stated by Fornell and Larcker (1981) and Chin (1998). Table 2 displays the outcomes and shows how the Fornell-Larcker assumptions were satisfied. As per Liu et al. (2018), the comparison of cross-loading pertains to the loading of an item on one construction and how it is cross-loaded on another construct. According to Table 3, all of the construct indicators' external loadings are bigger than cross-loadings. After calculating the average correlation of indicators across different constructs, the HTMT is divided by the average correlation of indicators measuring the same construct. The previous ratio is then divided by the heterotrait-heteromethod correlation,

which is the mean correlation of indicators that evaluate different constructs. According to Heseler et al. (2015), the O HTMT shouldn't go beyond 0.90. Table 4 shows that all associations meet the criteria. Our outcomes show that all constructs have good discriminant validity according to the Fornell-Larcker Criteria, Cross-loading, and Heterotrait-Monotrait Ratio.

Table 1. Discriminant Validity test (Fornell-Larcker criterion)

	IL	FL	ML	SS
IL	0,730			
FL	0,636	0,765		
ML	0,704	0,655	0,762	
SS	0,667	0,605	0,710	0,741

LF = Learning Facilities; ML = Motivation Learning; SS = Student Satisfaction; IL = Interest Learning.

Table 3. Discriminant validity test (cross-loading)

	Interest Learning (IL)	Learning Facilities (LF)	Motivation Learning (ML)	Satisfaction Student (SS)
IL 1	0,775	0,575	0,547	0,633
IL 2	0,769	0,401	0,473	0,477
IL 3	0,767	0,401	0,551	0,524
IL 4	0,564	0,390	0,417	0,303
IL 5	0,752	0,525	0,562	0,442
LF 1	0,344	0,734	0,424	0,349
LF 2	0,516	0,788	0,516	0,488
LF 3	0,532	0,794	0,565	0,502
LF 4	0,534	0,752	0,582	0,499
LF 5	0,538	0,787	0,486	0,476
LF 6	0,409	0,734	0,393	0,432
ML 1	0,538	0,460	0,728	0,601
ML 2	0,574	0,542	0,795	0,516
ML 3	0,467	0,499	0,791	0,555
ML 4	0,466	0,468	0,776	0,519
ML 5	0,535	0,504	0,753	0,477
ML 6	0,617	0,514	0,729	0,571
SS 1	0,617	0,507	0,531	0,729
SS 2	0,477	0,510	0,529	0,751
SS 3	0,468	0,487	0,544	0,717
SS 4	0,409	0,398	0,541	0,732
SS 5	0,458	0,415	0,547	0,764
SS 6	0,510	0,352	0,460	0,753

LF = Learning Facilities; ML = Motivation Learning; SS = Student Satisfaction; IL = Interest Learning.

Table 4. Discriminated validity test (Heterotrait-monotrait ratio-HTMT)

	Interest Learning (IL)	Learning Facilities (LF)	Motivation Learning (ML)	Satisfaction Student (SS)
Interest Learning (IL)				
Learning Facilities (LF)	0,758			
Motivation Learning (ML)	0,854	0,751		
Satisfaction Student (SS)	0,805	0,699	0,836	

The model was tested to ensure that there were no collinearity problems; the variance inflation factor (VIF) must be less than 3.3 (Kock, 2015). All of the builds had VIFs that fell below the cautious 3.3 level, with values ranging from 1.375 to 1.740. Therefore, multicollinearity does not seem to be a significant problem for this research.

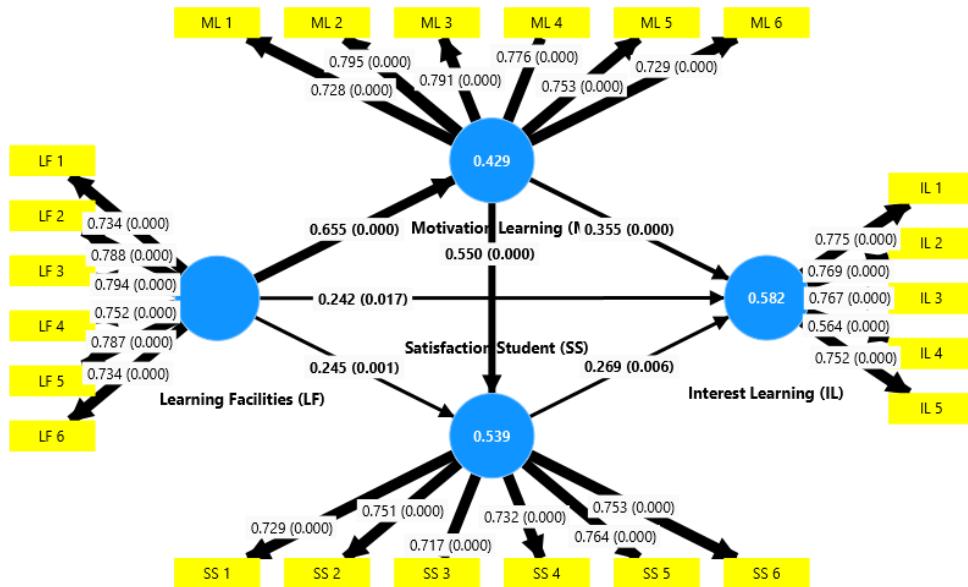
Table 5. Collinearity statistics (VIF)—Inner model.

Path	VIF
Learning Facilities (LF) -> Interest Learning (IL)	1,582
Learning Facilities (LF) -> Motivation Learning (ML)	1,456
Learning Facilities (LF) -> Satisfaction Student (SS)	1,732
Motivation Learning (ML) -> Interest Learning (IL)	1,407
Motivation Learning (ML) -> Satisfaction Student (SS)	1,732
Satisfaction Student (SS) -> Interest Learning (IL)	1,569

Structural Model Test

Our next step will be to analyze the structural model's predictions and test our hypotheses. The quality of the structural model is assessed using two measures. The explanatory effect value (F2) and the R2 value are used by the first indicator to assess the model's explanatory strength [2]. The second metric evaluates the predictive capability of the model by looking at the significance of the path coefficient, which forecasts the Q2 correlation, and the magnitude of the Q2 impact.

Hair et al. (2017) state that the explanatory effect value F2 measures how much the R2 value changes when specific exogenous variables are removed. Table 6 shows that 58.2% ($R^2 = 0.582$; adjusted $R^2 = 0.575$) of the variation in the IL endogenous construct is explained by the three LF exogenous constructs. The amount of information it can explain is somewhat limited (Hair et al., 2017). The explanatory impact value F2 measures the magnitude of the change in the R2 value after the exclusion of certain exogenous variables from the model (Hair et al., 2017).


To statistically assess the path coefficients, a bootstrap was used to conduct a one-sided test with a significance level of 0.05 for 5,000 samples. A study conducted by Hair and colleagues in 2017 found. The assessment was conducted using 5,000 bootstrap samples. The procedure begins by estimating a small number of bootstrap sub-samples at random, say 5000, using the PLS-SEM method. The next step is to use the final outcomes to generate a large number of bootstrap subsamples. The outcomes were thus fine-tuned to ensure they would

remain unchanged. Use the same samples; you'll find that there are more than enough for your research (5,000). Furthermore, a one-sided test was used since the study hypothesis included positive assumptions (Kock 2015). Table 6 shows that all of the model's exogenous variables have high levels of explanatory power as measured by Cohen's F2 value. Within the rational, the power of the exogenous variable "LF>ML" is considered higher ($F^2 = 0.752$ —average effect) when compared with the explanatory power of the exogenous variables "LF>IL", "LF>SS", "ML>IL", "ML>SS" and "SS>IL" ($F^2 = 0.074$; $F^2 = 0.074$; $F^2 = 0.125$; $F^2 = 0.374$ and $F^2 = 0.080$ —small effects) (Cohen 1988).

Table 6. *Model's explanatory capacity (R2, R2 adjusted, F2).*

Endogenous Latent Variable	R ²	R ² Adjusted	Effect Size F ²
Interest Learning (IL)	0,582	0,575	
Motivation Learning (ML)	0,429	0,426	
Satisfaction Student (SS)	0,539	0,534	
Path			
Learning Facilities (LF) -> Interest Learning (IL)			0,074
Learning Facilities (LF) -> Motivation Learning (ML)			0,752
Learning Facilities (LF) -> Satisfaction Student (SS)			0,074
Motivation Learning (ML) -> Interest Learning (IL)			0,125
Motivation Learning (ML) -> Satisfaction Student (SS)			0,374
Satisfaction Student (SS) -> Interest Learning (IL)			0,080

In a bootstrap analysis, it was shown that the route coefficients LF -> IL, LF -> ML, LF -> SS, ML -> IL, ML -> SS, and SS -> IL were statistically significant ($p < 0.01$). Figure 2 shows the result. Furthermore, the predictive correlation (Q2 of Stone-Geisser) is used to evaluate the criteria for the predictive significance of the PLS path model's cross-validation; it should not equal zero, and this helps in determining the correctness of the fitted model (Hair et al., 2017). The predictive value of Q2, which stands for the external construct, for the endogenous construct being considered is 0.551, as shown in Table 7. The relative impact of predictive relevance and the contribution of exogenous constructs on the Q2 value of an endogenous latent variable may be examined by measuring the effect size Q2. It is shown in Table 7 that the exogenous construct "SS" has a greater average effect ($q^2 = 0.262$), in contrast to the predictive relevance of "LF" and "ML" ($q^2 = 0.155$, $q^2 = 0.138$ —small influence).

Figure 2. Structural Model Test**Table 7.** Model Predictive Capacity (Q^2 and effect size q^2).

Constructs	Q^2	Q^2 Excluded	Effect Size q^2
Interest Learning (IL)	0,551		
Learning Facilities (LF)		0,521	0,155
Motivation Learning (ML)		0,530	0,138
Satisfaction Student (SS)		0,462	0,262

The positive link between LF and SS ($\beta = 0.245$, $p < 0.01$), LF and ML ($\beta = 0.655$, $p < 0.01$), ML and IL ($\beta = 0.335$, $p < 0.01$), ML and SS ($\beta = 0.550$, $p < 0.01$), and LF and IL ($\beta = 0.218$, $p < 0.001$) is validated by the structural model, which is based on Figure 2 and Table 8. The route coefficients linked to the six hypotheses that were put forward are so significant. So, the structural model backs up all three hypotheses. After ML>SS, ML>IL, SS>IL, LF>SS, and LF>IL, the endogenous construct ML was most affected by the exogenous construct LF. In addition, according to Hair et al. (2017), T statistically shows that LF and ML are more strongly correlated.

Table 8. Hypothesis testing outcomes.

Hypothesis	Path	Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (I O/STDEV I)	p Value s	Result
H1 (+)	(LF) -> (IL)	0,242	0,245	0,101	2,391	0,017	Supported
H2 (+)	(LF) -> (ML)	0,655	0,659	0,054	12,212	0,000	Supported

H3 (+)	(LF) -> (SS)	0,245	0,243	0,076	3,212	0,001	Supported
H4 (+)	(ML) -> (IL)	0,355	0,353	0,099	3,595	0,000	Supported
H5 (+)	(ML) -> (SS)	0,550	0,554	0,080	6,873	0,000	Supported
H6 (+)	(SS) -> (IL)	0,269	0,270	0,098	2,734	0,006	Supported

The next step in understanding the construct's behavior was to utilize a 5-point Likert scale with descriptive data derived from the questions that comprise it. The outcomes of the mean, median, lowest, and maximum values as well as the standard deviation for each question, are validated in Table 9. The Learning Facilities (LF) construct has six items, all of which use a 4-point scale: LF1, LF2, LF3, LF4, LF5, and LF6. Regarding the Learning Motivation (ML) construct, all questions (ML1, ML2, ML3, ML4, ML5, and ML6) are close to scale 4. Regarding the Student Satisfaction (SS) construct, all questions (SS1, SS2, SS3, SS4, SS5, and SS6) are close to scale 4. Lastly, on the Interest Learning (IL) construct, all questions (IL1, IL2, IL3, IL4, and IL5) are close to a scale of 4. In addition, when analyzing Table 10, it can be seen that the four constructs (Learning Facilities, Motivation Learning, Satisfaction Learning, and Interest Learning) have an average influence of around 4 (LF = 4.023; ML = 4.092; SS = 4.100; IL = 4.109) and the median of all constructs is close to the mean (LF = 4.000; ML = 4.000; SS = 4.000; IL = 4.000). None of the constructs received a mean lower than the midpoint of the scale.

Table 9. Descriptive statistics of items for each construct.

	Mean	Median	Observed Min	Observed Max	Standard Deviation
LF 1	3.994	4.000	3.000	5.000	0.557
LF 2	4.017	4.000	3.000	5.000	0.557
LF 3	4.006	4.000	3.000	5.000	0.547
LF 4	4.028	4.000	3.000	5.000	0.567
LF 5	4.028	4.000	3.000	5.000	0.586
LF 6	4.062	4.000	3.000	5.000	0.554
ML 1	4.090	4.000	3.000	5.000	0.555
ML 2	4.107	4.000	3.000	5.000	0.567
ML 3	4.090	4.000	3.000	5.000	0.545
ML 4	4.068	4.000	3.000	5.000	0.527
ML 5	4.085	4.000	3.000	5.000	0.519
ML 6	4.113	4.000	3.000	5.000	0.497
SS 1	4.158	4.000	2.000	5.000	0.609
SS 2	4.102	4.000	2.000	5.000	0.639
SS 3	4.056	4.000	3.000	5.000	0.599
SS 4	4.085	4.000	1.000	5.000	0.654
SS 5	4.073	4.000	2.000	5.000	0.638
SS 6	4.124	4.000	2.000	5.000	0.661

IL 1	4.090	4.000	2.000	5.000	0.604
IL 2	4.215	4.000	3.000	5.000	0.552
IL 3	4.153	4.000	3.000	5.000	0.586
IL 4	4.034	4.000	2.000	5.000	0.600
IL 5	4.056	4.000	3.000	5.000	0.570

LF = Learning Facilities; ML = Motivation Learning; SS = Student Satisfaction; IL = Interest Learning.

Table 10. Descriptive statistics of the constructs.

	Mean	Median
LF	4023	4.000
ML	4.092	4.000
SS	4.100	4.000
IL	4.109	4.000

LF = Learning Facilities; ML = Motivation Learning; SS = Student Satisfaction; IL = Interest Learning.

Material and Methods

Sample and Procedures

The approach of this investigation was based on quantitative techniques. Creswell (2015) defines quantitative procedures as methods that test hypotheses by collecting information to disprove previously held views. Meanwhile, according to Sugiyono (2017), the positivist approach to research emphasizes the use of research instruments to collect data from populations or samples, and the analysis of quantitative or statistical data for the purpose of testing hypotheses. The sampling technique used is simple random sampling, which is described by Sugiyono (2019) as picking a subset of a population at random without considering its stratification. Research data is collected using instruments, and in order to test out short-term theories or speculations, it is analyzed using quantitative methods and statistically based data processing.

This study was developed at the University in the city of Jambi. The sample consisted of 177 students, consisting of various students from Jambi city universities. This sample is adequate for the PLS-SEM used (Hair et al, 2017). Seven score and seventy-five undergraduates from various Jambi schools participated in the study. The sample is considered enough for the study at hand since PLS-SEM is being used, and it is a stable method that works with both small and huge datasets without necessitating assumptions (Hair et al, 2017). Using a Google Form, we were able to collect 177 responses from 8 different institutions in Jambi. Anyone may participate, and it's completely voluntary. The gender breakdown of the responses was as follows: males 48.02% and women 51.98%. Students from Jambi University made up the bulk (44.07%).

Measures

A self-administered online survey was created to evaluate the connection between learning facilities, motivation, satisfaction, and interest. Usman (2021), Yahya et al. (2023), Ningsih et al. (2023), and Satria et al. (2019) were the studies that served as the basis for the

customization of this questionnaire. One may find a list of the items used to measure various structures in Table 11: Learning Facilities, Learning Motivation, Student Satisfaction, and Learning Interest. The study instruments compiled in this study are organized into five parts. In the first part of the questionnaire, the researcher asks respondents to fill in their identity. The second part contains questions containing six items from the learning facility variable from Usman's study (2021), and the third part contains questions containing six items from the learning motivation variable from Yahya et al.'s (2023) study. In the fourth portion, six questions from the student satisfaction variable in the study by Ningsih et al. are included, and in the fifth section, five items from the learning interest research by Satria and Usman are added (2019). For this purpose, we use a Likert scale that includes the following options for evaluation: always, very disagree, disagree, neutral, agree, and very agree. Because of its accessibility and ease of use, the Likert scale was selected for the research. Compared to other scales, the Likert scale provides more accurate findings due to its simplicity in statistical analysis, sufficient response rates to capture participants' unique viewpoints, and enhanced dependability and interpretability of survey data.

Table 11. *Definition of constructs*

Construct	Description	References
Learning Facilities (LF)	Refers to the influence of learning interest, learning facilities, and learning motivation on learning outcomes.	(Usman, 2021)
Motivation Learning (ML)	Refers to the influence of teaching quality and campus facilities on student learning motivation	(Yahya et al, 2023)
Satisfaction Student (SS)	Refers to student satisfaction in online learning methods	(Ningsih et al, 2023)
Interest Learning (IL)	Refers to the impact of learning facilities and learning interest on learning outcomes	(Satria et al, 2019)

Data analysis

The proposed research model is the focus of this investigation. To do this, SmartPLS 4 employs the PLS-SEM method, which stands for Partial Least Squares Structural Equation Modeling. In exploratory research, the PLS-SEM statistical method is often used to build hypotheses or improve existing research by shedding light on the dependent variable's variance during model assessment. The social sciences make heavy use of this technique to probe hidden relationships between variables (Hair et al., 2017). Therefore, PLS-SEM is considered appropriate for this investigation since it is the best matched technique for theory construction and prediction. It is easier to handle a wider range of scenarios using PLS-SEM because of its efficiency when dealing with varied sample sizes and complex models; compared to, for example, CB-SEM, it has less estimating issues and imposes less data restrictions. Last but not least, PLS-SEM enables the concurrent estimate of multiple causal relationships between multiple independent variables and multiple dependent variables. It also makes it possible to look for connections and patterns in data.

This analysis is based on two stages. It all started with a Measurement Model Test, which shows how the construct has been operationalized via a series of indicators. Using analysis, find out how well this set of variables represents the idea (Hair et al., 2017). Execution of a Structural Model Test demonstrated the construct connection (path), secondly.

Discussion, Implications, Limitations, and Future Study Directions

The outcomes of this study suggest that classroom settings significantly affect students' intrinsic desire to learn. Students' motivation to learn is positively correlated with the availability of high-quality learning environments, including comfortable classrooms, library collections, state-of-the-art laboratories, and easy access to computers and other electronic devices. Damanik (2019) and Reski (2018) are among the studies that have shown how a supportive classroom atmosphere may increase students' drive and performance in the classroom. Assuming a conducive learning atmosphere increases the likelihood that students will participate actively in their education. Furthermore, as per Sari and Trisnawati (2020), students' interest in studying is significantly influenced by their learning motivation. Having a strong desire to study, whether it's from within (intrinsic) or outside (extrinsic), encourages pupils to go headfirst into their studies. Supriani et al. (2020) assert that students' intrinsic motivation is crucial for maintaining their interest in learning throughout time. Pupils who are intrinsically motivated to study tend to find the learning process more engaging than that of pupils whose motivation is based on external factors, such as grades or recognition (Sulasteri, 2013).

Learning satisfaction also plays an important role in increasing students' interest in learning. Students who are satisfied with their learning experience, including interactions with lecturers, understanding of material, and the quality of educational services, tend to have a higher interest in learning. Research by Putra (2019) and Sumarsono et al (2021) supports this finding, showing that high learning satisfaction can strengthen students' interest in learning. Thus, increasing learning satisfaction through improving the quality of educational services and academic support can be an effective strategy for increasing student interest in learning. The findings of this study also show that there is a close relationship between these three variables. According to Juaini et al (2024), adequate learning facilities can increase learning motivation and learning satisfaction, which in turn increases students' interest in learning. The interaction between these variables shows that efforts to increase student interest in learning must consider a holistic approach, which includes improving learning facilities, developing learning motivation, and increasing learning satisfaction. Overall, this study highlights the importance of educational institution support in creating a conducive learning environment. Educational institutions must take the initiative to provide enough facilities, encourage students to develop a love of learning, and ensure that students are satisfied with their educational experience. Efforts like this have the potential to improve the organization's overall teaching quality while simultaneously igniting students' interest in learning.

Implications

The implications of this study are very important for managers of higher education institutions and policymakers. First, educational institutions need to invest in improving learning facilities to create a conducive environment for students. Providing a library with a

complete book collection, modern laboratories and comfortable study spaces can encourage students' interest in learning. This step will not only increase interest in learning but can also improve student academic achievement. Second, programs designed to increase student learning motivation need to be developed. This includes developing an attractive curriculum, introducing innovative learning methods, and providing awards and recognition for outstanding students.

Students with high levels of learning motivation create an engaging classroom climate, contribute more actively to class discussions, and show more enthusiasm for the material. This is why schools must always be on the lookout for new ways to motivate their students. Third, educational institutions must focus on increasing student learning satisfaction by ensuring high quality educational services, good interaction between lecturers and students, and providing adequate academic support. High learning satisfaction will make students more involved and motivated in the learning process, thereby increasing their interest in learning. This effort includes training lecturers to improve the quality of teaching, improving supporting facilities, and providing academic counseling services to help students face learning challenges. Furthermore, this study shows that a holistic approach involving improving facilities, motivation and learning satisfaction simultaneously will provide more effective outcomes.

Educational institutions can develop integrated strategies that cover all these aspects to achieve optimal outcomes. For example, the integration of technology in learning will not only improve learning facilities but can also increase student motivation and learning satisfaction. In addition, policymakers at the national and regional levels also need to pay attention to these findings. Policies that support improving educational facilities, programs to develop learning motivation, and improving the quality of educational services can have a significant impact on students' interest in learning. Therefore, adequate budget allocation for education and the development of innovative programs is very important.

Limitations

This study has several limitations that need to be considered in interpreting the outcomes, namely: this study was conducted at one higher education institution, so the outcomes may not be generalizable to all higher education contexts. Each institution has unique characteristics that can influence study outcomes. Therefore, further research needs to be carried out in various institutions with different characteristics to strengthen the validity of these findings. Then, the instruments used to measure study variables may have limitations in terms of accuracy and reliability. Although efforts have been made to ensure the validity and reliability of the instrument, there is always the possibility of bias or error in measurement.

Further research needs to use instruments that have been tested more extensively and developed further to ensure accuracy and consistency of outcomes. This study focuses on three main variables, namely learning facilities, learning motivation, and learning satisfaction. However, other factors such as teaching quality, learning methods, social environment, and use of learning technology can also influence students' interest in learning and need further research. Further research that includes these variables will provide a more comprehensive understanding of the factors that influence student interest in learning.

In addition, this study uses a quantitative approach which may not be able to explore in depth the experiences and perspectives of students. Qualitative approaches involving in-depth interviews or focus groups can provide additional insight into how these factors influence

interest in learning. The combination of quantitative and qualitative methods in advanced research can produce deeper understanding. Lastly, this study was conducted at a specific point in time and does not consider long-term changes. Longitudinal research that tracks changes in student interest in learning over time will provide deeper insight into the dynamics of factors that influence interest in learning. This will be very useful in designing sustainable interventions to increase student interest in learning.

Future Research Directions

In the context of this research, further research needs to be conducted in various higher education institutions with different characteristics to strengthen the generalization of the findings and understand variations in educational contexts. By involving more institutions, the study outcomes will be more representative and can provide a more complete picture of the influence of learning facilities, learning motivation, and learning satisfaction on students' interest in learning. In addition, longitudinal research that examines changes in student interest in learning over time can provide deeper insight into the factors that influence ongoing interest in learning. Longitudinal studies will allow researchers to track changes in interest in learning and identify factors that have a long-term impact. This will be very useful in designing effective interventions to increase student interest in learning.

Considering the role of technology in education today, future study needs to explore the influence of the use of learning technology, such as online learning and digital media, on students' interest in learning. Learning technology can provide access to a wider range of educational resources and enable more interactive learning methods. Therefore, understanding how technology influences students' interest in learning will help educational institutions in designing learning strategies that are more effective and relevant to the needs of the times. Then, further research also needs to explore contextual factors such as learning culture, educational policies, and social dynamics that can influence students' interest in learning. Comparative studies between different countries or regions can provide additional insight into how different contexts influence interest in learning.

Conclusion

Learning resources, learning motivation, and learning pleasure are the three most important factors in stimulating students' interest in learning, according to this research. Students' motivation, happiness, and interest in studying are significantly impacted by having proper learning facilities, according to the study's outcomes. Moreover, prior research has shown that intrinsic motivation to learn has a positive effect on students' engagement and retention of course material; consequently, this study's outcomes provide a deeper understanding of the interconnectedness of these factors and their contribution to improving the quality of higher education. These outcomes suggest that schools should focus on making their learning spaces better, getting kids more excited about studying, and making them happier overall.

A high-quality instructor is essential for students' active participation in the learning process, as this study further shows. By understanding what factors influence students' willingness to study, educational institutions might potentially enhance student academic achievement more effectively. These studies provide a strong foundation for future study to

further explore the influence of learning technology and other contextual factors in understanding students' learning interest. Future study is expected to involve more educational institutions to gain a more comprehensive understanding of how to create a supportive, motivating and satisfying learning environment for students so that their interest in learning can be significantly increased.

References

Akbar, M. C., Sukarwoto, S., & Silaen, N. K. (2023). Peran Faktor Kebersamaan dan Kekeluargaan dalam Meningkatkan Prestasi Taruna Taruni di Politeknik Penerbangan Medan. *Sibatik Journal: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan*, 2(6), 1729-1740.

Charli, L., Ariani, T., & Asmara, L. (2019). Hubungan Minat Belajar terhadap Prestasi Belajar Fisika. *Science and Physics Education Journal (SPEJ)*, 2(2), 52-60.

Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. *Modern Methods for Business Research*, 295(2), 295-336.

Clark, R. C., & Mayer, R. E. (2011). *E-learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning*. John Wiley & Sons.

Cleopatra, M. (2015). Pengaruh Gaya Hidup dan Motivasi Belajar terhadap Prestasi Belajar Matematika. *Jurnal Formatif* 5(2) 168-181.

Creswell, J. W. (2015). *Penelitian Kualitatif & Desain Riset: Memilih di Antara Lima Pendekatan*. Yogyakarta: Pustaka Belajar.

Dacholfany, M. I. (2017). Inisiasi Strategi Manajemen Lembaga Pendidikan Islam dalam Meningkatkan Mutu Sumber Daya Manusia Islami di Indonesia dalam Menghadapi Era Globalisasi. *At-Tajdid: Jurnal Pendidikan dan Pemikiran Islam*, 1(01).

Damanik, B. E. (2019). Pengaruh Fasilitas dan Lingkungan Belajar terhadap Motivasi Belajar. *Publikasi Pendidikan*, 9(1), 46.

Deci, E. L., & Ryan, R. M. (2012). Motivation, Personality, and development within Embedded Social Contexts: An Overview of Self-Determination Theory. *The Oxford handbook of human motivation*, 18(6), 85-107.

Eccles, J. S., & Roeser, R. W. (2011). Schools as Developmental Contexts During Adolescence. *Journal of Research on Adolescence*, 21(1), 225-241.

Eriany, P., Hernawati, L., & Goeritno, H. (2014). Studi Deskriptif Mengenai Faktor-Faktor yang Mempengaruhi Motivasi Mengikuti Kegiatan Bimbingan Belajar pada Siswa SMP di Semarang. *Psikodimensia*, 13(1), 115.

Ernata, Y. (2017). Analisis Motivasi Belajar Peserta Didik melalui Pemberian Reward dan Punishment di SDN Ngaringan 05 kec. Gandusari kab. Blitar. *Jurnal Pemikiran Dan Pengembangan Sekolah Dasar (JP2SD)*, 5(2), 781-790.

Fa'atin, S. (2017). Meningkatkan Peran Perpustakaan Perguruan Tinggi dalam Membentuk Integritas Mahasiswa Menuju Kampus Berperadaban. *Jurnal Libraria*, 5(2).

Faristin, V. A., Ismanto, H. S., & Venty, V. (2023). Faktor-Faktor yang Mempengaruhi Motivasi Belajar Siswa SMA: Factors Influencing High School Students' Learning Motivation. *Jurnal Psikoedukasia*, 1(01), 125-153.

Firmansyah, D. (2015). Pengaruh Strategi Pembelajaran dan Minat Belajar terhadap Hasil Belajar Mahasiswa. *Jurnal Pendidikan Unsika*, 3(1) 34-44.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. *Journal of Marketing Research*, 18(1), 39-50.

Habsyi, F. Y. (2020). Pengaruh Fasilitas Belajar terhadap Prestasi Belajar Siswa SMA Nusantara Tauro. *Jurnal Pendidikan dan Ekonomi (JUPEK)*, 2(1), 13-22.

Hair, Joseph F., G. Tomas M. Hult, Christian Ringle, and Marko Sarstedt. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed. Los Angeles: SAGE.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. *Journal of the Academy of Marketing Science*, 43, 115-135.

Inayah, R. (2013). Pengaruh Kompetensi Guru, Motivasi Belajar Siswa, dan Fasilitas Belajar terhadap Prestasi Belajar Mata Pelajaran Ekonomi Pada Siswa Kelas XI IPS SMA Negeri 1 Lasem Jawa Tengah Tahun Pelajaran 2011/2012. *S2 Pendidikan Ekonomi*, 2(1).

Indarti, I., Wahyuningsih, U., Yulistiana, Y., Suhartini, R., & Prihatina, Y. I. (2021). Faktor-Faktor yang Mempengaruhi Kepuasan Belajar Jarak Jauh Mahasiswa Vokasi di Masa Pandemi Covid-19. *Jurnal Pendidikan Teknologi Dan Kejuruan*, 18(2), 226-236.

Islamiyah, N. (2019). Pengaruh Fasilitas Belajar dan Motivasi Belajar terhadap Prestasi Belajar Mahasiswa Jurusan Pendidikan Ekonomi 2017 Universitas Negeri Surabaya. *JPEKA: Jurnal Pendidikan Ekonomi, Manajemen Dan Keuangan*, 3(1), 23-32.

Juaini, A., Aliyah, N. D., & Darmawan, D. (2024). Pengaruh Fasilitas Belajar dan Gaya Mengajar Guru DAN Lingkungan Belajar terhadap Motivasi Belajar Siswa MTS NW Kotaraja Lombok Timur, NTB. *Jurnal Cahaya Mandalika ISSN 2721-4796 (online)*, 1890-1909.

Juhji, J., Rachman, M. S., & Nurjaya, N. (2020). Media Daring dan Kuantitas Pemberian Tugas terhadap Kepuasan Belajar Mahasiswa. *Al-Tarbawi Al-Haditsah: Jurnal Pendidikan Islam*, 5(2).

Jusmawati, J., Satriawati, S., & Sabillah, B. M. (2020). Pengaruh Pembelajaran Berbasis Daring terhadap Minat Belajar Mahasiswa PGSD Unimerz pada Mata Kuliah Pendidikan Matematika. *JKPD (Jurnal Kajian Pendidikan Dasar)*, 5(2), 106-111.

Kiswoyowati, A. (2011). Pengaruh Motivasi Belajar dan Kegiatan Belajar Siswa terhadap Kecakapan Hidup Siswa. *Portal Jurnal Universitas Pendidikan Indonesia*, 2(1), 12-16.

Ko, W. H., & Chung, F. M. (2014). Teaching Quality, Learning Satisfaction, and Academic Performance among Hospitality Students in Taiwan. *World Journal of Education*, 4(5), 11-20.

Kock, N. (2015). One-Tailed or Two-Tailed P Values in PLS-SEM?. *International Journal of e-Collaboration (IJeC)*, 11(2), 1-7.

Lee, S., & Choi, J. (2019). The Influence of Learning Facilities on Students' Academic Performance: Evidence from Korean High Schools. *Educational Technology Research and Development*, 67(5), 1193-1210.

Lomu, L., & Widodo, S. A. (2018). Pengaruh Motivasi Belajar dan Disiplin Belajar terhadap Prestasi Belajar Matematika Siswa.

Lussianda, E. O. (2019). Pengaruh Kepuasaan Mahasiswa terhadap Kinerja Dosen Sekolah Tinggi Ilmu Ekonomi Persada Bunda Pekanbaru. In *FORUM EKONOMI: Jurnal Ekonomi, Manajemen dan Akuntansi* 21(2), 126-131.

Maslow, A. H. (1943). A Theory of Human Motivation. *Psychological Review*, 50(4), 370-396.

Muhasim, M. (2017). Pengaruh Tehnologi Digital terhadap Motivasi Belajar Peserta Didik. *Palapa*, 5(2), 53-77.

Nagy, J. T. (2018). Evaluation of Online Video Usage and Learning Satisfaction: An Extension of the Technology Acceptance Model. *International Review of Research in Open and Distributed Learning*, 19(1).

Nani, E. F., & Melati, I. S. (2020). Peran Self Efficacy dalam Memediasi Motivasi, Persepsi Profesi Guru dan Gender terhadap Minat menjadi Guru. *Economic Education Analysis Journal*, 9(2), 487-502.

Ningsih, P. S. S., Santosa, M. H., & Kusuma I. P. I. (2023). EFL High School Students' Satisfaction in Online Learning and Expectations Towards Blended Learning: an Investigation. *Elsya: Journal of English Language Studies*, 5(2), 204-223.

Noviana. (2014). Pengaruh Fasilitas Belajar dan Lingkungan Belajar terhadap Motivasi Belajar Siswa Program Keahlian APK di SMK Taruna Jaya Gresik. *Jurnal Pendidikan Administrasi Perkantoran (JPAP)*, 2(2), 1-16.

Nurmala, D. A., Tripalupi, L. E., Suharsono, N., Ekonomi, J. P., & Ganesha, U. P. (2014). Pengaruh Motivasi Belajar dan Aktivitas Belajar terhadap Hasil Belajar Akuntansi. *Jurnal Pendidikan Ekonomi Undiksha*, 4(1), 1-10.

Oktiani, I. (2017). Kreativitas Guru dalam Meningkatkan Motivasi Belajar Peserta Didik. *Jurnal kependidikan*, 5(2), 216-232.

Prabowo, R. A., Hita, I. P. A. D., Lubis, F. M., Patimah, S., Eskawida, E., & Siska, S. (2023). Pengaruh Motivasi terhadap Hasil Belajar Dribbling Permainan Bola Basket. *Journal on Education*, 5(4), 12648-12658.

Sardiman, A. M. (2014). Interaksi dan Motivasi Belajar Mengajar. Jakarta: Rajawali Pers.

Putra, I. D. G. R. D. (2019). Peran Kepuasan Belajar dalam Mengukur Mutu Pembelajaran dan Hasil Belajar. *Jurnal Penjaminan Mutu*, 5(1), 22-31.

Rahayu, A. T., Muâ, M. A., & Hadi, M. F. (2023). Upaya Peningkatan Minat Belajar Siswa dalam Mata Pelajaran Pendidikan Agama Islam melalui Metode Discovery Inquiry. *Jurnal Pendidikan Agama Islam Al-Thariqah*, 8(1), 121-132.

Rahman, S. (2022, January). Pentingnya Motivasi Belajar dalam Meningkatkan Hasil Belajar. In Prosiding Seminar Nasional Pendidikan Dasar.

Rajab, A. F., & Indriyani, D. (2024). Pengaruh Suasana Belajar terhadap Keaktifan Belajar Mahasiswa MSDMA Angkatan 22 di Kampus Politeknik STIA Lan Jakarta. Pustaka: *Jurnal Bahasa dan Pendidikan*, 4(2), 196-201.

Ramdhani, R. A., Rojabi, M. N., Mubarok, M. C., & Kholis, N. (2024). Artikel Dampak Kepuasan Kerja terhadap Kinerja Karyawan SDN Warungdowo 1. *Publikasi Riset Mahasiswa Manajemen*, 5(2), 98-108.

Reski, A. (2018). Pengaruh Fasilitas Belajar terhadap Motivasi dan Hasil Belajar Fisika Mahasiswa. *Musamus Journal of Science Education*, 1(1), 001-008.

Rista, N. (2022). Pengaruh Minat Belajar terhadap Motivasi Belajar Mahasiswa Universitas Panca Sakti Bekasi. *Research and Development Journal of Education*, 8(1), 148-152.

Sappaile, B. I., Mahmudah, L., Gugat, R. M. D., Farlina, B. F., Mubarok, A. S., & Mardikawati, B. (2024). Dampak Penggunaan Pembelajaran Berbasis Game terhadap Motivasi dan Prestasi Belajar. *Jurnal Review Pendidikan dan Pengajaran (JRPP)*, 7(1), 714-727.

Sari, Y. I., & Trisnawati, N. (2021). Analisis Pengaruh E-Learning dan Kesiapan Belajar terhadap Minat Belajar melalui Motivasi Belajar Sebagai Variabel Intervening Mahasiswa Program Beasiswa FLATS di Surabaya pada Masa Pandemi Covid-19. *Jurnal Kependidikan: Jurnal Hasil Penelitian Dan Kajian Kepustakaan Di Bidang Pendidikan, Pengajaran Dan Pembelajaran*, 7(2), 346-360.

Satria, B., Yasri, Y., & Usman, M. (2019, April). The Impact of Learning Facilities and Learning Interest on Learning Outcome. In 2nd Padang International Conference on Education, Economics, Business and Accounting (PICEEBA-2 2018) (pp. 793-797). Atlantis Press.

Sidabutar, M. (2020). Pengaruh Motivasi Belajar terhadap Prestasi Akademik Mahasiswa. *Epistema*, 1(2), 117-125.

Sugiyono. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.

Sugiyono. (2019). Metode Penelitian Kuantitatif, dan R&D. Bandung: Alfabeta.

Sulasteri, S. (2013). Faktor-Faktor yang Mempengaruhi Prestasi Belajar Mahasiswa Jurusan Pendidikan Matematika Fakultas Tarbiyah dan Keguruan UIN Alauddin Makassar. *MaPan: Jurnal Matematika Dan Pembelajaran*, 1(1), 151-177.

Sumarsono, R. B., Maisyaroh, D. E. K., & Kusumaningrum, D. E. (2021). Pengaruh Tingkat Kualitas Layanan, Faktor Kepuasan, dan Motivasi Belajar terhadap Prestasi Mahasiswa. *Ilmu Pendidikan Jurnal Kajian Teori dan Praktik Kependidikan*, 43-52.

Supriani, Y., Ulfah, U., & Arifudin, O. (2020). Upaya Meningkatkan Motivasi Peserta Didik dalam Pembelajaran. *Jurnal Al-Amar: Ekonomi Syariah, Perbankan Syariah, Agama Islam, Manajemen Dan Pendidikan*, 1(1), 1-10.

Syaparuddin, S., Meldianus, M., & Elihami, E. (2020). Strategi Pembelajaran Aktif dalam Meningkatkan Motivasi Belajar PKN Peserta Didik. *Mahaguru: jurnal pendidikan guru sekolah dasar*, 1(1), 30-41.

Syardiansah. (2016). Hubungan Motivasi Belajar dan Minat Belajar terhadap Prestasi Belajar Mahasiswa Mata Kuliah Pengantar Manajemen (Studi kasus Mahasiswa Tingkat I EKM A Semester II). *Jurnal Manajemen dan Keuangan*, 5(1), 440-448

Trong, K. L. (2017). The Impact of Learning Facilities on Students' Learning Interest: A Case Study of High Schools in Vietnam. *International Journal of Higher Education*, 6(3), 51-59.

Usman, O. (2021). The Effect of Learning Interest, Learning Facilities, and Learning Motivation on Learning Outcomes (Case Study of UNJ Office Administrative Education Student). *SSRN: Social Science study Network*.

Wibowo, N. (2016). Upaya Peningkatan Keaktifan Siswa melalui Pembelajaran Berdasarkan Gaya Belajar di SMK Negeri 1 Saptosari. *Elinvo (Electronics, Informatics, and Vocational Education)*, 1(2), 128-139.

Widiyarto, S. (2017). Pengaruh Minat Belajar dan Pemahaman Kalimat terhadap Kemampuan Menulis Kalimat Efektif. *Mendidik: Jurnal Kajian Pendidikan dan Pengajaran*, 3(2), 169-177.

Yahya, S., Darman., Domili, M. A., tahir, D. S., Wahid, M., & Basri, S. (2023). The Effect of Teaching Quality and Campus Facilities on Student Learning Motivation. *The Eastasouth Journal of Learning and Educations*, 1(2), 36-43.

Yasin, M., & Baresi, I. S. (2024). Menumbuhkan Minat Belajar Siswa melalui Metode Pembelajaran Kreatif. *Journal of International Multidisciplinary Research*, 2(2), 367-379.